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A Lower Bound on the Variance of 
Conductance in Random Resistor Networks 
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We study the conductance of random resistor networks in d~> 2 dimensions. It 
is shown (under some technical assumptions)  that if a network exhibits a non- 
zero conductivity in the infinite-volume limit, then the variance of a finite- 
volume conductance grows at least like the volume, 
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In a real material, translational invariance is typically absent due to the 
presence of impurities and this effect often has to be taken into account for 
a proper understanding of the material's properties. Since positions of the 
impurities vary from one sample of the material to another, it is often 
assumed that they are distributed randomly. A way of accounting for this 
randomness mathematically is to make the structural parameters of the 
model random. Random resistor networks are mathematical models with 
random parameters, describing classical (as opposed to quantum) conduc- 
tivity of disordered materials. More precisely, we consider a network of 
resistors with random conductivities and study its effective conductivity. In 
such a model, due to randomness, conductance (and its inverse--the 
resistance) is itself a random variable, as it depends on the random 
parameters of the model (strictly speaking, this statement is only true in a 
finite volume, i.e., for a finite network; see discussion of the infinite-volume 
limit below). 

In this paper we address the question: how does the rate of conduc- 
tance fluctuations depend on the volume of the network? We derive a 
lower bound which says that if the system exhibits a nonzero effective 
conductivity in the infinite-volume limit, the variance of the (appropriately 
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normalized) finite-volume conductance is at least of the order of the 
volume. This is not an obvious result, since conductance depends on 
individual bond conductivities in a highly nontrivial way and is, in par- 
ticular, far from being a sum of independent random variables. Similar 
results were obtained in ref. 8 for a class of extensive functions of independ- 
ent random variables, that is, roughly speaking, for functions not far from 
being additive over the volume. We emphasize that conductance is not a 
quantity of this type and therefore different techniques have to be used to 
analyze its fluctuations. Our method is based on tools developed in ref. 1 
for the purpose of studying fluctuations (more precisely, the moment 
generating function) of the difference of finite-volume free energies in the 
random-field Ising model (RFIM) with two different boundary conditions. 
This quantity was instrumental in proving absence of spontaneous 
magnetization in the two-dimensional RFIM (as well as of first-order phase 
transitions in some other random systems). The argument was by contra- 
diction: had the spontaneous magnetization been nonzero, the fluctuations 
of the above-mentioned difference of free energies would be bigger than 
allowed by a simple uniform bound on the quantity. Thus the pivotal part 
of the argument can be roughly expressed as saying that a nonzero spon- 
taneous magnetization drives the fluctuations of the free energy difference. 
The result of the present paper is, in a certain sense, analogous, and can 
be summarized by saying that a nonzero effective conductivity in the infinite- 
volume limit drives the fluctuations of the (finite-volume) conductance. 
Unlike the other statement, the present result is dimension independent. 

Let us now introduce the two basic technical tools of the paper. In 
what follows the expectation of a random variable X will be denoted by 
E[X] .  The variance of a random variable X is thus equal to 

Var[X] = E[ X -  E[ X] ]'- (1) 

Lernma 1. Let r]l . . . . .  tiN be independent random variables on some 
probability space and let X be a function of N real variables, such that the 
random variable X(q~ ..... r/,~,) has finite second moment. Let us introduce 
versions of this random variable averaged over all q/ except for the one 
with index i: 

X,=fX(q, ..... r/,v) I-I #j(dq;) (2) 
i : . /~  i 

Here p/denotes the distribution of q./. Then 

N 

Var[X]  i> }-" Var[Xi]  (3) 
i = 1  
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Proof. The proof can be found in ref. 8. 

Remark. Note that X; is a function of r/;. In fact, it is simply the con- 
ditional expectation of X(r/~,..., r/u), conditioned on the a-field generated by 
the random variable r/t: 

X i  = E [  X (  r/ , ,..., r /N) IF / i ]  (4) 

The lemma thus reduces the task of estimating the variance of a (possibly 
complicated) function of N independent variables r/i to that of estimating 
variances of functions of individual r/;. 

Our second lemma shows how to estimate the variance of a function 
g of a real-valued random variable a, knowing that the expectation of 
ag'(a) does not vanish. Other estimates of this type were used in ref. 1 to 
estimate fluctuations of free energy-like quantities. 

L a m i n a  2. Suppose v is a measure with a support in [0, +oo), 
having a differentiable density p with respect to the Lebesgue measure, 
such that 

f[p(a) da < oo (5) 
+ ap'(a)] 2 
p(a) 

Define 

(6) 

Then ),,,(s)= 0 only at s = O. 

Proof, Integrating by parts and using Schwarz' inequality, we get 

fo +~- ag'(a) p(a) <~ [ fo+~ g2(a) p(a) da] '/" [ f :  ~ [P(a) + ap'(a) ] " da] 

(7) 

so that when j~-~ ag'(a)p(a)da=s we get 

fo ~- s (8 )  g~(a) p(a) da >/jo~. { [p(a) + ap'(a) ]Z/p(a)} da 

and, by assumption, the last expression equals s times a positive constant. 
The proof is complete. 
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Remark. Condition (5) is equivalent to ~ ' - [ p ' ( x ) ~ / p ( x ) ]  d x <  co. It 
is easy to see that this is satisfied in particular when p ( x ) = o w  -~" 
(exponential distribution), p( x ) = ( 2/a v / - ~  ) exp( - x2 /2a 2) (one-sided nor- 
mal distribution), and by many other naturally occurring smooth densities, 
decaying sufficiently fast at + oo. 

In the simplest case considered here the conductivities of individual 
resistors are independent and identically distributed random variables. We 
assume for simplicity that the resistors are attached to the edges of the 
d-dimensional hypercubic lattice Z '1, although the result of this paper 
applies to many other situations. We thus have a family of i.i.d, random 
variables a,-,., one for each pair of integer points with Euclidean distance 1. 
Consider a finite part of the lattice--a cube AL of size L, centered at the 
origin. The quantity we want to study is the conductance of the part of the 
network, contained in this cube, between its two opposite faces. The physi- 
cal setup to be kept in mind is as follows: the opposite faces of the cube 
are connected to a battery which maintains a fixed potential difference. The 
potential is constant on these faces and for simplicity we will assume that 

~b.,.=0 for xl = - L ,  ~b,.= 1 for x l = L  (9) 

The conductance is then given by Kelvin's variational principle: 

ZL = i n f  ~ a,.,.(~.,.--q~.,.)'- (10) 
I x - y [  = | 

where the infimum is taken over all configurations of (real) potentials, ~b,., 
x ~ A , ,  subject to the above boundary conditions. The main goal of the 
paper is to study the fluctuations of s Note that if the potential difference 
is chosen differently, the conductance is just multiplied by a constant, inde- 
pendent of the variables a,.,.. We have normalized the potential difference 
so that ~'L is of the order L u-2 (see below). The choice of the (Neumann) 
boundary conditions is made to fix the ideas: the results will not use it in 
any way. The crucial property of Z" L that will be used in the proof is its 
homogeneity of degree 1 in the variables a , . .  

The main physical assumption we want to make is that the system 
exhibits bulk conductivity in the infinite-volume limit. Otherwise, with a 
predominant probability, Z" L = 0 and the problem is not very interesting 
(except, of course, for the very difficult problem of the conductance fluctua- 
tions at the critical point; see ref. 6). A natural definition of the infinite- 
volume conductivity a* is 

a * =  lim XL L-- ,~  L '1-2 ( 1 1 )  
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Existence of the above limit is far from trivial, but it has been proven in 
a number of important cases. The (almost surely constant) limit is known 
to exist in the L 2 sense if the support of a,:,. is bounded away from zero. 15'4) 
Hammersley (2) has observed that with special boundary conditions, almost 
sure existence of the limit follows for general distributions by the subad- 
ditive ergodic theorem. Recently Zhikov Ira) has published a proof which 
applies to the Neumann boundary conditions in an analogous model 
defined in the continuum. Kesten (3~ proved the existence of effective con- 
ductivity in the two-dimensional model with conductivities equal to 0 or 1 
with probabilities 1 - p  and p respectively, for p close to 1. Finally, for 
hierarchical resistor networks, existence of the (almost surely constant) 
limit has been proven in L2, ~7~ and in some cases almost surelyJ 9~ In what 
follows we will for simplicity assume that the limit exists almost surely and 
that it is almost surely independent of the realization of the conductivities 
a,:,.. It is easy to state and prove analogs of Theorem 1 with weaker 
assumptions, e.g., that the limit is nonzero and exists in probability. 

T h e o r e m  1. Suppose that the distribution measure v of the con- 
ductivity variables satisfies the assumptions of Lemma 2, that the limit in 
(11) exists almost surely, and a * >  0. Then there exists a constant C >  0 
such that 

lim infL 4- '1Var[XL] > 0 (12) 
L ~ :r_ 

Proof. It follows from the definition of- rL that it is a homogeneous 
function of degree 1 of the variables a.,:,.. By Euler's formula we have 

OZL (13) 
Z ,  = ~ a.,.,. Oa,.,. 

. \ : V  �9 , 

We will use this relation to estimate the variance of XL. Let us apply the 
inequality of Lemma 1, which estimates the variance of a function of inde- 
pendent random variables by a sum of variances of its averaged versions. 
In our context the inequality reads 

Var[XL]/> Y, Var[XL..,_,.] (14) 
A'Y 

where XL..,..,. is the result of integrating SL over all a,.,y, with 
{x,y} {x', y'}: 

Z~..,..,.=~ ZL I-I v(da.,.,.,.,) ( 1 5 )  
I.r ~ { .,-'..~"} 
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or, in probabilistic notation, 

ZL..,-,. = E[ ZL I a.,:,.] (16) 

(the conditional expectation of Z L, conditioned on the random variable 
a,:,,). Thus ZL,.,:,. depends only on a.,_,,. In order to estimate the variance of 
ZL..,-,. we will use Lemma 2. Now it follows from the definition of ZL..,:,, that 

+ ~ dZL ""da dZL [ a,, dZc ] 
fo a,.,,., da ,.,."" w=fH..v(da'")a"-"da,., , = E "  .. L t ' ~ J .  (17) 

It follows from Lemma 2, together with the bound (14), that 

Var[XL]~>~?, E a.,..,.da.,.,.j (18) 
A'y  . 

Now its definition implies that 5' is a convex function, so that we obtain 
from (18) 

E a~, dZL Var[-rL] >/IALI ~ - ~  

Using the fact that 5' is a homogeneous function of degree 2 (this follows 
easily from the definition), we can rewrite the last expression as 

L a- 2"- E Z .  E XL 

where c is a constant depending on the dimension only (we use here the 
fact that IALI is to leading order equal to cLa). By Fatou's lemma, 

l im in fE[  Z'L ] [ i m i n  ~ ]  i_-,~_ L,---7i75_, - >~E 1 f = E [ a * ] = a *  (21) 

so, by (obvious) monotonicity of 5', 

Var[~L] 
lim inf ~7-;~-~ >/y(a*) > 0 

L ~ t ~  L - 

(22) 

which completes the proof. 
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Remark. We have only used the fact that the limit in ( 11 ) is not iden- 
tically zero, and not that it is constant. However, the limit is expected to 
be constant in physically relevant situations. 
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